Photo by Paul Kirchner.

Examples of Diversified Farming Systems

Through the use of a suite of farming practices, DFS promote functional biodiversity that provides critical inputs to agriculture – building soil fertility, cycling nutrients and water, and supporting beneficial insects that control pests and pollinate crops.

These practices include planting many crop varieties in a single field; incorporating trees, livestock, or aquaculture; rotating crops; planting hedgerows and riparian buffers; and conserving natural areas in the landscapes around the farm. By supporting a rich fabric of habitats and species from plot to field to landscape scale, DFS allow critical ecosystem services – from pollination and pest control to nutrient cycling– to be generated and regenerated within the ecosystem, forming the basis for sustainability.

Schematic of Diversified Farming Systems
Illustration courtesy of the Xerces Society.


Socially, DFS depend on diverse cultures, practices, and governance structures to support management practices adapted to the local environment. In many ways, this kind of local adaptation has taken place since the dawn of agriculture, as humans, plants, and animals have co-evolved in the environment, with farmers gradually shaping the evolution of what we now call food. So it’s not surprising that many DFS have their roots (literally) in traditional knowledge accumulated over millennia.

For example, in the milpa system in Mesoamerica, farmers cycle intercropped plantings of maize, beans, and squash with fallow periods to allow their land to recuperate.

On the other hand, some DFS are quite new, created recently through targeted agroecological studies designed to solve specific problems. The push-pull system for maize agriculture in Kenya, for example, is an ingenious method for controlling maize stemborer moths by intercropping grasses that encourage moths to lay their eggs in the grasses, instead of in the maize.

At the Center for DFS, we seek to study, preserve, cultivate and advance this type of human knowledge and practice – whether ancient or modern, discovered, re-discovered, or there-all-along – as it is the intellectual base on which the ongoing evolution of farming depends.