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Abstract 
The world needs around 150 Pg of negative carbon emissions to mitigate cli-
mate change. Global soils may provide a stable, sizeable reservoir to help 
achieve this goal by sequestering atmospheric carbon dioxide as soil organic 
carbon (SOC). In turn, SOC can support healthy soils and provide a multi-
tude of ecosystem benefits. To support SOC sequestration, researchers and 
policy makers must be able to precisely measure the amount of SOC in a giv-
en plot of land. SOC measurement is typically accomplished by taking soil 
cores selected at random from the plot under study, mixing (compositing) 
some of them together, and analyzing (assaying) the composited samples in a 
laboratory. Compositing reduces assay costs, which can be substantial. Taking 
samples is also costly. Given uncertainties and costs in both sampling and as-
say along with a desired estimation precision, there is an optimal composite 
size that will minimize the budget required to achieve that precision. Con-
versely, given a fixed budget, there is a composite size that minimizes uncer-
tainty. In this paper, we describe and formalize sampling and assay for SOC 
and derive the optima for three commonly used assay methods: dry combus-
tion in an elemental analyzer, loss-on-ignition, and mid-infrared spectrosco-
py. We demonstrate the utility of this approach using data from a soil survey 
conducted in California. We give recommendations for practice and provide 
software to implement our framework.  
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1. Introduction 

Climate change is likely to put enormous strain on nature and human societies 
in the coming decades. It is largely driven by the release of atmospheric carbon 
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dioxide (CO2) that was once sequestered in the earth, either in fossil fuels or as 
soil carbon. Since agriculture began, soils have lost about 50% - 70% of their 
carbon to the atmosphere. Soil still accounts for the 2nd largest store of carbon 
on Earth after the ocean, containing about 7.5 times that of the atmosphere [1]. 
However, agriculture is now one of the largest contributors to global carbon 
emissions. 

In pursuit of solutions, a growing movement of farmers and other advocates 
are highlighting “regenerative agriculture” as a way to make agriculture a net 
sink, rather than a source, of carbon—CO2 from the atmosphere and sequester-
ing it in the land as soil organic carbon (SOC). Regenerative agriculture provides 
a variety of ecosystem services including water use efficiency, biodiversity, and 
overall soil health. These may be sufficient to support its use, but to pay for re-
generative agriculture on the basis of SOC sequestration, decision makers need 
to know how much carbon is sequestered by different strategies. 

In order to measure SOC sequestration, at a minimum scientists must be able 
to measure how much SOC is in a given plot of land at a given point in time. 
This task is referred to as “SOC stock estimation” Soil scientists accomplish SOC 
stock estimation by collecting multiple cores of soil from a given plot, prepar-
ing/processing the samples, and analyzing (assaying) their SOC concentration by 
a number of different techniques. SOC is either presented on its own, as a con-
centration, or it is converted to stock using soil bulk density measured on nearby 
intact cores. Both sampling and assay of SOC concentration are subject to un-
certainties and both become expensive at the volumes necessary to overcome 
these uncertainties. All else equal, increasing the number of samples and the 
number of assays will reduce uncertainty while driving up costs. A process called 
compositing allows investigators to reduce cost by mixing together sampled 
cores and assaying the mixture(s), but compositing incurs additional error when 
there is uncertainty in the assay. 

Figure 1 sketches this trade-off in an example where 100 cores have been col-
lected, and the investigator must now choose how much to composite before as-
saying the composited samples. Parameters and costs are taken from a survey of 
California rangelands, detailed later in this paper (Section 9). Figure 1(a) shows 
that, across the range of possible composite sizes, the cost increases by a factor of 
7. Correspondingly, Figure 1(b) shows a 5-fold decrease in standard error. 
Clearly, compositing has substantial implications for both uncertainty and cost. 

In this paper, we resolve this trade-off by presenting sampling and assay as an 
optimization problem. Given a fixed budget, we derive the sampling and assay 
sizes that minimize estimation uncertainty. Conversely, given a fixed estimation 
precision we’d like to achieve, we derive the optimal sizes to minimize the budg-
et. The solutions depend on the heterogeneity and mean SOC concentration of 
the plot(s) under study, the assay error, and the costs associated with sampling 
and assay. 

Our paper is organized as follows. In Section 2, we situate our work in the soil 
science and statistics literature. In Section 3 we formalize the objectives of SOC  
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(a) 

 
(b) 

Figure 1. Costs (a) and error (b) associated with estimating SOC concentration across a 
range of possible composite sizes. Decreasing the size of composites (taking more assays) 
yields a tradeoff: estimation error will decrease, but costs will increase. These assay costs 
and error reflect assay of California rangeland topsoils with loss-on-ignition. For details 
see Sections 7 and 9, especially Table 2. SOC = soil organic carbon; USD = United States 
Dollars. (a) Cost by composite size; (b) Error by composite size. 
 
estimation. We then turn to the logistics and statistics of estimation, covering 
sampling in Section 4, compositing in Section 5, sample preparation in Section 6, 
and assay in Section 7. Section 8 contains our main results: optimal sample and 
assay sizes to maximize precision under budget constraints. Scientists, farmers, 
and policy-makers can use these results to design their own efficient sampling 
and compositing strategies. To facilitate practical use of our methods, we dem-
onstrate their use by applying them to data from a soil survey in California in 
Section 9. We derive optimal assay strategies and composite sizes in this setting. 
Section 10 discusses additional nuances, challenges, and extensions of stock esti-
mation, and provides recommendation for practice. All of our work is supported 
by R software, available at https://github.com/spertus/soil-carbon-simulations. 

https://doi.org/10.4236/ojss.2021.112006
https://github.com/spertus/soil-carbon-simulations


J. V. Spertus 
 

 

DOI: 10.4236/ojss.2021.112006 96 Open Journal of Soil Science 
 

2. Other Relevant Literature 

As part of this paper we review the components of stock estimation and the 
processes of sampling, compositing, and assay. We focus on estimating the av-
erage concentration of SOC in a plot. In order to make minimal assumptions 
about the plot under study and for our results to be as general as possible, we 
take the design-based perspective on estimation. Thus, the model of SOC con-
centration in the plot is minimal. Specifically, we do not make any assumptions 
about the spatial distribution of SOC concentration. Inference proceeds from 
random sampling, while SOC concentration is unknown but fixed. Webster and 
Lark [2] and de Gruijter et al. [3] provide accessible reviews of soil sampling, in-
ference, and optimization from the design-based perspective. 

The design-based perspective contrasts with the model-based or “geostatistic-
al” perspective, originally developed to map gold mines [4]. The geostatistical 
approach to SOC stock estimation conceptualizes SOC content as random or at 
least well approximated by a random process. Geostatistics is especially useful 
for estimating an entire function of a soil property, i.e. for mapping. We do not 
examine the model-based approach in detail here. Diggle and Ribeiro [5] and de 
Gruijter et al. [3] are good references on geostatistics and its applications to nat-
ural resource monitoring. 

Patil et al. [6] provide a detailed accounting of the statistics of compositing, 
and includes an analysis of compositing with additive assay error. The benefits 
of compositing depend on the relative size of the plot heterogeneity to the assay 
error. Lark [7] analyzes properties of various compositing schemes alongside a 
geostatistical model for spatial variation. The author shows that compositing 
nearby cores improves the precision of an SOC map, compared to taking a single 
core at each location. Kosmelj et al. [8] analyze compositing alongside a cost 
model in the context of soil sampling for zinc or calcium, solving an optimiza-
tion problem for compositing over subplots without considering assay error. In a 
case study, they found that optimal compositing could reduce costs by around 
50% while maintaining estimation precision. 

We analyze three laboratory assay methods used to measure SOC concentra-
tion in soil samples: loss-on-ignition (LOI), dry combustion in an elemental 
analyzer (DC-EA), and mid-infrared spectroscopy (MIRS). LOI involves mea-
suring the difference in mass before and after heating samples in a furnace. The 
heating cooks off the organic matter in the soil—along with an unpredictable 
amount of “mineral” or structural water. The amount of mass lost can be 
mapped to the SOC concentration in the sample using ordinary least squares re-
gression [9] [10]. DC-EA combusts small aliquots of soil at high temperatures in 
an elemental analyzer that measures the amount of CO2 released during the 
burn. DC-EA machines vary in their specifics, but are generally considered the 
gold-standard for precise determination of SOC concentration [9] [11] [12]. 
MIRS assays carbon by shining infrared light on samples and recording the wa-
velengths absorbed. These wavelengths (“spectra”) can then be closely mapped 
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to SOC concentration (determined by DC-EA) using machine learning methods. 
MIRS requires a considerable upfront investment both in the machinery and in 
developing a large spectral library that links wavelength signatures to SOC con-
centrations within a region of interest (e.g. a country or state). MIRS and vis-NIRS 
could become highly cost-effective assay strategies as prices come down and 
spectral libraries expand [9] [13] [14]. LOI and MIRS are “high-throughput” 
methods, as many samples can be analyzed quickly and cheaply. However these 
methods offer less precision than DC-EA, and may be prone to biases. 

The core contribution of this paper is similar in spirit to a classical power 
analysis, which determines how many samples are needed to estimate quantities 
to within a desired precision or to run a hypothesis test at a desired power. 
Kravchenko and Robertson [15] present basic methods and an application of 
power analysis to detecting SOC change in tillage experiments. Pringle et al. [16] 
derived sample sizes necessary to detect changes in SOC stocks on Australian 
rangelands. A 2019 report by the Food and Agriculture Organization of the 
United Nations also includes a section on conducting power analysis [11]. These 
power analyses do not consider the effects of compositing or assay error, nor do 
they consider the costs of sampling and assay. In our work we provide a frame-
work to derive optimal composite sizes given a cost model. In the process, we 
characterize budgets that are needed to achieve reasonable precision when esti-
mating SOC concentration. 

There is a precedent for analyzing optimal designs in soil science, but most of 
this work has been done in the geostatistical literature and generally concerns 
how to optimally distribute samples given an assumed model. If scientists have 
access to a reliable variogram describing the spatial distribution of SOC, then the 
sampling design can be optimized to minimize estimation or prediction variance 
van Groenigen et al. [17], Brus et al. [18]. If SOC exhibits any spatial au-
to-correlation, well-spread random samples can increase efficiency compared to 
uniform independent random sampling. Traditionally, grid or transect sampling 
is often used, but these designs may be biased and don’t yield accurate standard 
errors Webster and Lark [2], Wolter [19]. Investigators may also use auxiliary 
variables, like management type, topography, or vegetation, to yield more effi-
cient sampling designs. de Gruijter et al. [20] presents a recipe to estimate SOC 
concentration or stock at the farm scale. That paper focuses on reducing costs 
through an optimally-stratified sampling design, while compositing receives less 
attention. Other modern design approaches aim to improve spatial coverage or 
auxiliary variable balance through sophisticated random sampling. Well-spread 
random samples can be achieved by a kind of nested stratification, as in the ge-
neralized random tessellation stratified design [21], or by the cube or local pi-
votal method, wherein samples repel each other spatially [22]. All of these papers 
seek to optimally distribute sample points and do not account for assay error. 

New ways of measuring SOC stocks continue to emerge at a rapid pace, driven 
by advances in technology and data science. Assay can now be accomplished di-
rectly in the field using techniques like mobile infrared spectroscopy, eddy cova-
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riance assay, inelastic neutron scattering, and laser-induced breakdown spec-
troscopy. These techniques tend to involve far more assay error than laboratory 
analyses [9] [13] [23]. Additionally, an active area of research seeks to combine 
various assays and remote sensor data using machine learning and geostatistics 
[13] [24] [25]. A few of these new technologies do not involve randomly sam-
pling cores, and are thus outside the context of this work. The rest apply readily 
to framework we present here. 

3. Estimation Goals 

SOC concentration (e.g. percent SOC or grams of SOC per kg of soil) is a 
(non-random) three-dimensional function in latitude, longitude, and depth. In 
this paper, we are interested in estimating the average concentration, µ , in a 
bounded area of land to some fixed depth; or the total stock of SOC   in the 
area. Typically, estimation occurs within fixed depth profiles, which can then be 
aggregated to whole-profile stock or concentration estimates. The equivalent soil 
mass method provides an important alternative strategy wherein profiles are de-
fined to some predetermined mass, not depth [26]. 

We follow the convention of estimating concentrations and stocks within pro-
files defined by depth or mass. We thus suppress dependence on depth as we 
develop our ideas. For concreteness, the reader may imagine we are only dis-
cussing top-soil concentration or stock in what follows, though our analysis ap-
plies to any profile. We also stress that the maximum depth of the survey is very 
important. Many physical, chemical, and biological mechanisms can move SOC 
downward or cause soil loss at depth. Long-term management can impact deep 
soil SOC, so concentrations and stocks may need to be estimated down to a me-
ter or more to accurately account for the SOC sequestration of different man-
agement strategies [27] [28]. 

If we are only interested in average concentration, it suffices to estimate µ . If 
we want to estimate the stock  , we also need the bulk density in grams per 
cubic centimeter d, the area of the plot in square meters  , and the length of 
the profile in meters L. Assuming that bulk density is constant within depth, the 
total amount of carbon within the depth profile is 

410 .L dµ≡ × × × ×   

The factor 104 includes conversion of %SOC to gram per gram, and bulk den-
sity to grams per cubic meter. Different factors may be applied to report SOC in 
tons per hectare (Mg∙ha−1). 

In reality, SOC is never exactly the same across a study area. The degree of 
heterogeneity can be expressed as the plot variance, 2

pσ , which is the average 
squared distance of SOC concentration from the mean µ  (for a definition in 
symbols see Section A in the Appendix). If every point in the plot has the same 
SOC concentration µ , then 0pσ = . On the other hand, if the SOC concentra-
tion is highly variable across the plot then pσ  will be large. The maximum val-
ue, 50pσ = , is attained when half the plot is 0% SOC and the other half is 100% 
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SOC. Along with the assay precision, the plot heterogeneity pσ  allows us to 
characterize the uncertainty in estimates of µ . 

4. Sampling 

Investigators typically estimate µ  by sampling relatively small amounts of soil 
from the plot under study. Soil samples can be taken using an auger, a corer, or 
by digging a pit. An auger can mix soil horizons, while with a corer horizons are 
typically kept distinct. Compaction can occur with either method, which may 
skew depths or density estimates. Digging a pit and drawing samples from the 
side may yield the best samples, with clear horizons and no compaction, but is 
relatively destructive and very labor intensive. In what follows, we typically refer 
to a distinct (uncomposited) sample as a “core,” though in principle it could be 
drawn by any of the above methods. Taking cores at randomly sampled loca-
tions can ensure that estimates of µ  are unbiased. In this section, we describe 
three random sampling approaches that are regularly used in practice: uniform 
independent random sampling, stratified sampling, and cluster sampling. 

Uniform independent random samples (UIRSs) are generated by sampling n 
points uniformly—no particular locations are favored and independently—the 
location of a particular core does not affect the location of any other. In the soil 
science literature, UIRSs are sometimes equated with “simple random samples” 
[2]. However, in statistics simple random sampling denotes uniform sampling 
without replacement from a discrete, finite population. We use the more cum-
bersome UIRS to avoid confusion. Sometimes, plots are conceptually “discre-
tized” by mapping the continuous surface to a fine grid, which then becomes the 
finite sampling frame so that simple random sampling is equivalent to uniform 
independent random sampling (UIRSing). UIRSs can provide unbiased esti-
mates of µ  no matter how SOC is distributed in the plot. UIRSs also yield un-
biased estimates of the heterogeneity pσ . This allows researchers to character-
ize the precision of the estimate and thus to conduct hypothesis tests or con-
struct confidence intervals based on a UIRS. 

Stratified sampling can be used to take advantage of auxiliary information 
about the distribution of SOC, which can yield more precise estimates. For ex-
ample, in rangeland the distribution of SOC may be driven by topography, ve-
getation type, mineralogy, microclimates, or land-use history [2] [16]. Strata and 
sample sizes per strata can be selected using algorithms that predict SOC con-
centrations in order to maximize the expected precision given a fixed overall 
sample size [20]. Like UIRSs, stratified samples can yield unbiased estimates of 
µ , pσ , and the variance of estimators. 

Finally, cluster random samples are drawn by first choosing a point at random 
and then deterministically sampling along a regular transect or grid extending 
from the original point. Cluster random samples with a single random starting 
point are sometimes called “systematic random samples” in the soil science lite-
rature [3]. Cluster random samples have the advantage of automatically distri-
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buting samples evenly across part of a plot. Logistically, this makes samples rela-
tively easy to collect, since cores can be efficiently taken by moving regular dis-
tances along the transect or grid. Statistically, this reduces the variance of sample 
means from cluster random samples when SOC is positively correlated in space, 
a standard geostatistical assumption. However, sample means from cluster ran-
dom samples are not inherently unbiased and do not have a simple variance. 
Both of these properties depend on further assumptions about how SOC is dis-
tributed within the plot [2] [3] [19]. If these assumptions are not met, cluster 
random samples may yield biased or imprecise estimates. Periodicity of the 
property under study (due to row cropping, for example) can lead to poor infe-
rences. 

In this paper, we assume that cores are gathered by UIRSing. This makes our 
results quite general, and covers the wide range of applied cases where UIRSing 
is used. Furthermore, the variance of sample means from a stratified or cluster 
sample is typically lower than that of a UIRS—lower variance is the main reason 
why more sophisticated designs are used. Thus our results can be interpreted as 
a providing an upper bound on the uncertainty of these other sampling designs. 
Finally, if we assume that SOC is distributed completely randomly in a given 
plot (i.e. with no spatial correlation), then the properties of estimates based on a 
UIRS are equivalent to those based on stratified or cluster random sampling. 

There are, however, certain land types or surveys where UIRSing can be logis-
tically infeasible. For example, in row crop studies, only treated rows can be 
sampled, which is typically much easier to achieve using cluster sampling. Fur-
thermore, note that there is a logistically optimal way to collect n cores by 
UIRSing. First, sample all n points from the plot, find the shortest path through 
all n points, and move along that path collecting cores at the sampled points. 
This is called the “traveling salesman problem” in computer science. The length 
of the shortest path through a UIRS of size n generated in a plot of area   
tends to be about 0.72 n  [29]. Even compared to this shortest path, cluster 
random samples can have much shorter paths: a transect sample for a rectangu-
lar a b×  plot is no longer than 2 2a b+  for any n. For example, in the expe-
riments conducted by [27] the plots are 64 64×  meters and 10 cores were col-
lected per plot. 4096=  square meters and the shortest path through 10n =  
randomly generated points is expected to be about 146 meters. On the other 
hand, a transect through such a plot is about 91 meters. This makes the transect 
path length only 60% of the expected length of the best UIRS path. 

5. Compositing 

Compositing is the practice of combining cores together from a particular pro-
file in order to capture variability in the plot while reducing assay costs. Where 
we call n the number of cores, sampled from the field, k is the number of sam-
ples left after compositing. Edge cases are n k= , when we do no compositing, 
and 1k = , when we composite down to one sample. We assume here that each 
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composited sample is comprised of equal proportions of the constituent cores. 
We also assume that n is divisible by k and that each composited sample is com-
prised of exactly n/k cores. For example, we might take a UIRS of 30n =  cores 
from a plot and composite down to 6k =  composited samples of size 5n k =  
constituent cores. We also assume that samples are perfectly homogenized after 
compositing, so that equal parts of constituent samples are present in any given 
aliquot of the composited sample. Perfect homogenization may be difficult to 
achieve in some types of soils, like soils with high clay content that tend to clod, 
which can compromise the validity of compositing. Our final assumption is 
compositing additivity, which implies that the SOC concentration in a compo-
sited sample is equal to the mean SOC concentration of its constituent cores. 
Compositing additivity is met for SOC, but not for other properties like pH, 
which needs to be considered if investigators plan to measure such properties 
using the same samples. 

There are two reasons why more compositing is not always better. First, assay 
error leads to (hopefully) unbiased but still variable assays, which needs to be 
reduced by assaying multiple cores or else by assaying a single core multiple 
times. Second, compositing is itself an error prone process. It can be very diffi-
cult to achieve exactly equal proportions and perfect homogenization, especially 
in heavy clay soils. These challenges can be alleviated and the errors are hedged 
by assaying more, smaller composite samples. Finally, in order to do inference 
we typically need to estimate the plot heterogeneity pσ , which can only be es-
timated when 2k ≥ , a topic we return to in Section 8.3. 

Logistically, compositing is almost always done in the field to reduce the labor 
of transporting all n cores to the laboratory. A drawback is that it may be more 
difficult to achieve good homogenization in field using crude tools on field-moist 
soil. Furthermore, it is generally important to composite at random. If nearby 
cores are composited together, which can arise naturally if compositing is done 
sequentially along a transect or shortest UIRS path, the properties of the sample 
variance of composited samples may be different. For example, suppose that 
nearby points tend to have similar SOC concentrations and that nearby points 
are systematically composited together. In this case the sample variance of com-
posited samples of nearby samples will underestimate 2

pσ , which will lead to 
over-optimistic conclusions about the precision of an estimate of µ  [6]. 

6. Preparing Samples for Assay 

Sample preparation affects both the cost and precision of estimates of µ , and 
generally depends on the assay method (see Table 1). For dry combustion in an 
elemental analyzer (DC-EA), samples must be air dried at room temperature. 
For loss-on-ignition (LOI), samples should be dried in an oven at 105 degrees 
Celsius, as they must completely dry. The composition of the soil can also de-
termine the proper drying temperature. Salts present in some soils will hold onto 
water at temperatures higher than 105 degrees, so [23].  
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Table 1. A table of sample preparation procedures, their costs per sample, and whether 
they are needed for assay with LOI, DC-EA, or MIRS. Asterisk denotes that sample prep-
aration may vary depending on specific details of the assay technology or soils. IC = in-
organic carbon; LOI = loss-on-ignition; DC-EA = dry combustion in an elemental ana-
lyzer; MIRS = mid-infrared spectroscopy. 

Procedure LOI DC-EA MIRS 

Transportation √ √ √ 

Oven Drying √ × × 

Air Drying × √ √ 

Sieving √ √ √ 

Grinding × √ √ 

Check for IC × √* × 

 
After drying, samples are passed through a 2 mm sieve, which helps remove 

large bits of organic material (e.g. large roots) and rock. Nevertheless, it can be 
challenging to differentiate between aggregates and rocks, and to make sure that 
all > 2 mm aggregate material makes it through the sieve. In particular, some 
soils are too hard once they dry and must be broken up with a mortar and pestle 
before they can be sieved. Roots may also be picked out by hand. Some studies 
aim to isolate and separately quantify root fractions. Furthermore, when com-
paring plots (e.g. in an experiment), carbon in roots can overshadow differences 
in SOC content [11] [30]. 

After drying, samples are ground to a fine powder (e.g. in a ball mill), which 
helps ensure homogenization and accurate assay. MIRS can be very sensitive to 
the size and uniformity of the grind [13]. On the other hand, LOI does not re-
quire soils to be ground. 

Finally, many elemental analyzers (EAs) used for DC-EA cannot distinguish 
between SOC and soil inorganic carbon (e.g. carbonates). For such machines, 
assays give the concentration of total carbon, not just organic carbon. Soils must 
be checked in advance for inorganic carbon before assay. If the pH is greater 
than 7.4, ground samples may be treated with hydrochloric acid to remove car-
bonates [9]. Methods like LOI don’t get hot enough to combust carbonates, 
while MIRS can usually distinguish between organic and inorganic carbon in 
spectra. 

7. Assay 

In this section, we review the three major methods for assaying SOC concentra-
tion before introducing the concept of assay error. For more details on these as-
say methods, as well as newer in situ methods see the recent reviews by Nayak et 
al. [9] and Viscarra Rossel [13]. 

DC-EA is the gold standard for SOC assay. EAs are expensive to purchase, 
maintain, and run, but they measure carbon directly and at a fairly high 
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throughput. EAs combust aliquots of soil at high temperatures (around 1000˚C) 
in a pure oxygen environment, and assay the CO2 released using gas chromato-
graphy. DC-EA is generally the most precise and expensive assay method for 
SOC, but the precision and cost per analysis will vary by EA model. 

To assay a sample by LOI, investigators measure the mass of dried soil sam-
ples, bake them at around 550˚ celsius in a muffle furnace, and then measure 
how much mass was lost during baking [11] [23]. This process (ideally) cooks 
off all the organic matter in the soil, some fraction of which is SOC. The fraction 
of organic matter that is SOC is determined by calibrating the LOI assays to 
DC-EA assays using linear regression, or by using a fixed conversion factor of 
0.58 [23]. However, the nature of the relationship between LOI and DC-EA is 
often site specific, depending in particular on the vegetation, texture, and resi-
dual water content in the soil [9] [10]. The site level differences make LOI espe-
cially tricky for comparing different plots, as opposed to the same plot at differ-
ent times, because water content and mineralogy may differ substantially. This 
makes 0.58 suspect as a universally valid fraction. It is well-known that LOI is 
relatively imprecise, even in the ideal scenario where it is calibrated to soils using 
DC-EA. However, LOI is considerably cheaper than DC-EA both in terms of 
upfront costs and costs per sample, and allows investigators to assay many more 
samples per assay rep than DC-EA [10]. 

MIRS works by shining light in the mid-infrared range (4000 - 400 cm−1 or 
2500 - 25,000 nm) on dried samples and measuring the wavelengths that are ab-
sorbed [9] [14] [31] [32]. MIRS is a high-throughput technology that requires 
even less resources than LOI. It has the further logistical advantage of simulta-
neously assaying SOC and soil inorganic carbon (SIC), alongside many other soil 
properties like pH, texture, and cation exchange capacity [14]. MIRS is thus a 
promising new assay method despite the considerable upfront costs of units. 
Similar to LOI, MIRS must be initially calibrated to DC-EA assays. A database of 
samples that contains both spectra and DC-EA SOC assays is called a spectral li-
brary. Spectra are unique to soils, so spectral libraries must be constructed with-
in a region of interest and do not transfer well to new regions [14]. Furthermore, 
unlike LOI, the relationship between spectra and SOC content is not simple, ne-
cessitating the use of more complex prediction methods that need to be rigo-
rously validated [14] [32]. Calibrations are also highly sensitive to sample prep 
procedures: samples must be well dried and ground to a consistent size for pre-
cise assay [14]. Labs can expect to pay a significant upfront cost for purchasing a 
MIRS unit and establishing a spectral library, but after the initial investment 
MIRS is cost effective to run, and can be quite precise with proper user training 
and sample preparation, making it an appealing alternative to DC-EA. 

From a statistical perspective, the assay process is important because addi-
tional random error is introduced into the data. Unbiased assays are centered on 
the true SOC concentration of the (composited) sample. Biased assays systemat-
ically overestimate or underestimate the SOC concentration. It is not guaranteed 
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that assays are unbiased (see Bellon-Maurel and McBratney [32]), though we 
will assume that they are here. Even when assays are unbiased, they add error to 
SOC estimation as measurements will not be exactly the same for two or more 
assays run on the same sample. This variability can be due to errors in weighing, 
slight differences in aliquots taken from the same sample (especially if homoge-
nization is poor), instrumental drift, or error in predictions or calibrations (es-
pecially for LOI and MIRS). We conceptualize assay error on a multiplicative 
scale so that the amount of error is proportional to the true SOC concentration. 
Unbiased multiplicative errors are centered at 1, but realizations vary around 1 
depending on a variance 2

δσ , which is roughly the expected percent error in as-
say. We detail how to estimate 2

δσ  in Sections C.1 and C.2 of our Appendix. 
As an example, a realized assay error of 1.1 will cause a true SOC concentra-

tion of 1% to appear as 1.1% and a true SOC concentration of 5% to appear as 
5.5%. A precise assay method has a small 2

δσ  so realizations tend to be close to 
1, and the measured SOC concentration is close to the true SOC concentration. 
Note that we will sometimes use an additional subscript to refer to a specific 
method, e.g. ,DC-EAδσ  is the assay error variance of DC-EA. 

8. Optimal Sampling and Assay 

In this section we highlight our main results. We provide a formula for the pre-
cision of estimates of µ  given a sample size n and a number of assays k. We 
derive the optimal n and k that will maximize precision while maintaining a 
given budget. 

8.1. Estimation Error 

Suppose we have a UIRS of size n and that composites are formed randomly 
from n/k samples in equal proportions and with perfect homogenization, so that 
k assays are taken. Suppose *

iS  is the assayed SOC concentration of the ith 
composited sample. Our estimator is the mean of these assayed composite sam-
ples: 

*

1

1ˆ .
k

i
i

S
k

µ
=

= ∑  

This is an unbiased estimator of µ , so that [ ]µ̂ µ= . Its variance is 

( )
( )2 2 2 21

ˆ .p

n k
δ δ

σ σ µ σ
µ

+
= +                   (1) 

If there is no assay error, this reduces to the usual formula for the variance of 
a UIRS mean: p nσ . Because the estimator is unbiased, it’s expected error 
(mean-squared error) is also equal to (1). In order to reduce the error, we can 
either gather more samples n or make more assays k. The optimal allocation of 
samples and assays will depend on the plot parameters pσ  and µ , the assay 
error variance 2

δσ , and a cost model for sampling and assay. 
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8.2. Optima 

We now introduce such a cost model. Call costc the cost of sampling a single 
core, costP the cost of sample preparation, and costA the cost of assaying a single 
composited sample. Note that these costs depend on the sampling and assay 
methods employed. For example, costA under LOI is considerably lower than 
costA under DC-EA. We assume that the cost of compositing itself is negligible, 
but it could easily be included in costc. Finally, we assume a fixed cost of the 
study cost0, which doesn’t vary over n and k. The total cost is: 

( )0cost cost cost cost .c P An k+ ⋅ + ⋅ +                  (2) 

We ultimately want to choose both an optimal n and k, which we call nopt and 
kopt respectively, as well as a sample prep and assay method. We first consider 
the sample prep and assay methods to be fixed, optimizing only for n and k, and 
then discuss how to choose among strategies. 

Given the cost model along with the plot and assay parameters, the composite 
size that minimizes the error in Equation (1) is: 

2
opt

opt

1 cost cost
.

cost
p P A

c

n
k

δ

δ

σ σ
µσ
+ +

= ×                  (3) 

The optimal composite size thus depends on the ratio of plot heterogeneity 

δσ  and the degree of assay error δσ . It also depends on the ratio of assay and 
sampling costs, though it is less sensitive to small changes in cost due to the 
square root applied to this ratio. Note that there are two boundary conditions 
that are not reflected in Equation (3). Namely, if we initially find opt 1k <  then 
we take opt 1k =  with the implication that all cores should be fully composited 
to 1 composite sample. On the other hand, if we find opt optk n> , then set 

opt optk n=  with the implication that all sampled cores should be assayed without 
compositing. Ultimately, there are only gains to compositing if  

( )( )2 2 2 21 cost cost cost .p P A cδ δσ σ µ σ+ + >  

Otherwise no compositing should be done. 
Given a fixed budget B, we can compute the optimal variance ( )optµ̂ . The 

optimal variance can be difficult to interpret. Taking the square root yields the 
optimal standard error ( )opt

ˆSE µ  we can achieve at budget B:  

( )
( )2

opt
0

1 cost cost cost
ˆSE

cost
p c P A

B
δ δσ σ µσ

µ
+ + +

=
−

          (4) 

The optimal standard error is on the same scale as the estimate (i.e. percent 
SOC). 

Finally, different sample prep and assay methods involve trade-offs between 
the costs and the assay error. Clearly, if a method is both cheaper and less erro-
neous, it is preferred. But how much error should we tolerate for a cheaper as-
say? The relative efficiency of different methods is the ratio of the minimum er-
rors they are able to achieve, per Equation (4). The relative efficiency of method 
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1 over method 2 is:  

( )
( )

( )
( )

1 1 1 1

2 2 2 2

2
opt,1

2
opt,2

1 cost cost costˆSE

ˆSE 1 cost cost cost

p c P M

p c P M

δ δ

δ δ

σ σ µσµ

µ σ σ µσ

+ + +
=

+ + +
         (5) 

A relative efficiency close to 1 suggests a near toss-up between different sam-
ple prep and assay strategies. On the other hand, a large relative efficiency sug-
gests that method 2 is more efficient than method 1, and vice versa for a small 
relative efficiency. The upshot is that for any budget, we can achieve substantial-
ly more precise estimates when the relative efficiency is far from 1. 

Alternatively, given a maximum variance V that we can tolerate, we might ask 
for a minimum budget over all ways of allocating the budget to samples and as-
says. This is the inverse of the previous problem. The expressions for the opti-
mum n and k are fairly complicated. We provide details in Section B.2 in our 
Appendix. 

8.3. Variance Estimation 

So far we have assumed that we know the parameters δσ  and pσ . In practice, 
these quantities must be estimated with gathered data or, when planning a sur-
vey, based on physical reasoning and past studies. 

An unbiased estimator of the plot variance 2
pσ  is the usual sample variance 

with an adjustment factor for the size of composites:  

( )22 *

1

1ˆ ˆ ,
1

k

p i
i

n S
k k

σ µ
=

 = − − 
∑  

whereas above, *
1

1ˆ k
ii S

k
µ

=
= ∑  As previously noted, this formula will underes-

timate the sample variance if composite samples are systematically more homo-
geneous than the plot itself. This can happen, for example, when composites are 
grouped together by distance instead of randomly. 

We can estimate δσ  using replicated assays, detailed in Section C.1 of our 
appendix. For methods like LOI or MIRS that involve calibration, the additional 
error due to calibration must be taken into account. See Section C.2. 

Putting these pieces together, we can estimate the overall standard error of µ̂  by: 

 ( )
( )2 2 2 2ˆ ˆ1 ˆ ˆ

ˆSE p

n k
δ δ

σ σ µ σ
µ

+
= +  

8.4. A Confidence Interval 

If the sample size n is not too small, then an asymptotic confidence interval 
based on the t-distribution with 1n −  degrees of freedom will be approximately 
correct. Specifically, denote ( )1 /2t α−  

as the ( )1 2α− /  quantile of the 
t-distribution with 1n −  degrees of freedom. The interval  

( )
 ( ) ( )

 ( )1 /2 1 /2ˆ ˆ ˆ ˆSE , SEt tα αµ µ µ µ− −
 − × + ×   
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bounds the true mean µ  with probability about ( )1 α− . Checking if a partic-
ular value of µ  (say 0µ ) is in this interval is equivalent to a level α  t-test of 
the null hypothesis 0 0:H µ µ= . Often, a researcher will set 0.05α =  to yield a 
95% confidence interval:  ( )  ( )ˆ ˆ ˆ ˆ1.96 SE , 1.96 SEµ µ µ µ − × + ×  . In instances 
where the confidence interval includes values less than 0, in particular if 

 ( )ˆ ˆ1.96 SE µ µ× > , it is valid to set the lower confidence limit equal to 0. 

8.5. Estimating a Difference 

Often, investigators aim to estimate the difference between average SOC con-
centrations, either between two plots at the same time or within the same plot at 
different times. Let 1µ  and 2µ  be the mean SOC concentrations in plot 1 and 
plot 2. Then the parameter of interest is 1 2µ µ− . Let 1µ̂  and 2µ̂  be estimators 
of 1µ  and 2µ , as above. Then the difference in means, 1,2 1 2

ˆ ˆ ˆµ µ∆ = − , is an 
unbiased estimator of 1 2µ µ− . Furthermore, assuming independent UIRSing in 
each plot, the standard error is:  

( ) ( ) ( )1,2 1 2
ˆ ˆ ˆSE .µ µ∆ = +   

The optimum SE of the difference can be attained by separately optimizing 
( )1µ̂  and ( )2µ̂ , as above, yielding sampling and assay sizes of 1n , 1k  for 

plot 1 and 2n , 2k  for plot 2. A reasonable estimate of the SE is  
 ( ) ( ) ( )1,2 1 2

ˆ ˆˆ ˆ ˆSE µ µ∆ ≡ +  . An approximate ( )1 α−  confidence interval on 
the difference is:  

( )
 ( ) ( )

 ( )1,2 1,2 1,2 1,21 /2 1 /2
ˆ ˆ ˆ ˆSE , SEt tα α− −

 ∆ − × ∆ ∆ + × ∆   

where ( )1 /2t α−  is now the ( )1 / 2α−  quantile of the t-distribution with 
( )1 2min ,n n  degrees of freedom. 

If sample sizes are fairly small, say 1 2, 30n n < , the difference-in-means will 
generally not have a normal distribution. In this case, a permutation test should 
be used to test for a difference between 1µ  and 2µ . Permutation tests provide 
an exact level α  test at any sample size, without assumptions about the distri-
butions of the samples. Permutation confidence intervals can be derived by test-
ing a range of hypotheses over a grid of effect sizes. The corresponding 1 α−  
confidence interval contains all effect sizes that are not rejected at level α . Pe-
sarin and Salmaso [33] and Good [34] are good references for the theory and 
implementation of permutation tests. 

9. Application 

In this section we demonstrate a practical application of our analysis. We draw 
on a variety of sources to estimate parameters and costs. We stress that the re-
sults are not intended to provide universal guidance on sampling, sample prep, 
and assay—they are highly sensitive to the inputs. The open-source software and 
web tool we provide are intended to enable investigators to draw their own con-
clusions from their own inputs. 
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9.1. Data 

We combine data from multiple sources to estimate δσ  for DC-EA, LOI, and 
MIRS: ,DC-EAδσ , ,LOIδσ , and ,MIRSδσ , respectively. ,DC-EAδσ  is estimated from 
assays on samples taken from rangeland soils in Marin County, California by the 
Silver Lab at UC Berkeley, referred to here as the Marin data. The samples were 
run in duplicate on a Carlo Elantech Elemental analyzer at UC Berkeley. We use 
the method presented in Section 8.3 to compute ,DC-EA,ˆ iδσ  on each sample and 
took the median across samples to get ,DC-EAδσ . We applied the methods pre-
sented in detail in Section C.2 of our appendix to estimate the additional assay 
error in LOI and MIRS calibrated to DC-EA assays. Briefly, we derived the vali-
dation root mean squared error (RMSEv) for LOI by regressing LOI assays on 
DC-EA assays taken at the Agricultural Diagnostic Laboratory at the University 
of Arkansas (ADL). These assays were taken on samples from several sites in 
Colorado collected by the Wainwright Lab at Lawrence Berkeley National La-
boratory. We estimated ,MIRSδσ  using the RMSEv provided in Table 4 of Eng-
land and Viscarra Rossel [13]. They computed this estimate from a median of 
MIRS RMSEv values reported in a range of studies. These errors were then di-
vided by our estimates of µ̂  and added to the DC-EA error variance estimate 
to approximate their overall assay error variance on a multiplicative scale. We 
also computed the SE assuming no assay error and no cost to assay, which 
represents a typical power analysis and provides a lower bound on the SE across 
assay methods. 

We used the Marin data to get estimates of pσ  and µ  in the topsoil (0 - 10 
cm) and in deep soil (50 - 100 cm). Within depth profiles, we computed the 
sample mean and standard deviation at each site and then took the median over 
sites as our estimates ˆ pσ  and µ̂ . The samples were collected using transect 
sampling, not UIRSing, but should provide reasonable estimates. 

9.2. Results 

Inputs: All inputs are summarized in Table 2. Using the Marin data, we esti-
mated the topsoil plot heterogeneity as ˆ 0.54pσ =  and the mean as ˆ 3.61µ = . 
We estimated the deep soil heterogeneity as ˆ 0.12pσ =  and the deep soil mean 
as ˆ 0.48µ = . Based on the duplicated DC-EA assays, we obtained the estimate 

,DC-EAˆ 0.02δσ = . The RMSEv for LOI was 0.31 in the range of the Marin data as-
says. Dividing by µ̂  and combining this with the DC-EA error, we estimated 
an error variance for LOI of ,LOIˆ 0.11δσ =  in the top soil and ,LOIˆ 0.67δσ =  in 
deep soil. England and Viscarra Rossel [13] reported a median RMSEv of 0.11 for 
MIRS, yielding an estimate of ,MIRSˆ 0.05δσ =  in the top soil and ,MIRSˆ 0.25δσ =  
in deep soil. 

The cost of sampling and the fixed costs of the survey are not well con-
strained. We set the fixed cost at 0cost 200≡  and costc at 5, 20, or 40 USD to 
reflect cheap, medium, and expensive sampling. We assumed a transport cost of 
2.00, a cost of 4.00 for oven drying, 1.00 for air drying, 2.00 for sieving, 4.00 for  
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Table 2. Inputs to optimization problem as estimated from Marin and LBL data. ,DC-EAˆδσ  

is the assay error of DC-EA; ,LOIˆδσ  is the assay error of LOI; ˆ pσ  is the plot heterogene-

ity (standard deviation); µ̂  is the plot mean concentration; DC-EAcost  is the cost of 
DC-EA assay plus the costs of associated sample prep; LOIcost  is the cost of LOI plus the 
costs of associated sample prep; MIRScost  is the cost of MIRS plus the costs of associated 
sample prep. costc is the cost of sampling. 

Description Notation Value(s) 

DC-EA assay variance ,DC-EAˆδσ  0.02 

LOI assay variance ,LOIˆδσ  0.11, 0.67 

MIRS assay variance ,MIRSˆδσ  0.05, 0.25 

Plot heterogeneity ˆ pσ  0.68, 0.12 

Plot mean µ̂  3.57, 0.48 

Fixed cost 0cost  200 

Cost of DC-EA assay DC-EAcost  26.00 

Cost of LOI assay LOIcost  9.25 

Cost of MIRS assay MIRScost  10.30 

Cost of taking a core costc  5, 20, 40 

 
grinding, and 2.00 for acid testing for inorganic carbon. Without root picking, 
this puts the cost of sample prep at 8.00 for LOI, 11.00 for DC-EA, and 9.00 for 
MIRS. The assay costs for DC-EA and MIRS were estimated in [35]. That paper 
reported a cost of about 15 USD per sample for DC-EA and 1.30 USD per sam-
ple for MIRS. The 12:1 price ratio of DC-EA to LOI reported in De Vos et al. 
[10] yields an assay cost of 1.25 USD per sample for LOI. Adding costP and costA 
for each method yields DC-EAcost 26 D.00 US= , LOIcost 9. D25 US= , and 

MIRScost 10 D.30 US= . 
Outputs: Figure 2 plots the optimal SE of estimation attainable for each assay 

method across a range of budgets. Figure 3 plots the same results but rescaling 
SEs to coefficients of variation. The output indicates that DC-EA is the best as-
say method in both topsoil and deep soil, yielding the most precise estimate at 
any given budget. In terms of relative performance, the assay method is more 
important in the deep soil than in the topsoil: DC-EA represents a major im-
provement over the other methods in deep soil, while the precision is essentially 
a toss-up in top soil. Under our inputs, DC-EA gets close to achieving the lower 
bound implied by no assay error. 

Optimal composite sizes are provided in Table 3 across the range of sampling 
costs and depths. Compositing is more valuable as the assay method becomes 
more precise and expensive, with large gains to compositing under DC-EA and 
essentially no gain under LOI. Compositing is also more valuable if samples are 
cheap to gather and the plot is heterogeneous, in which case it becomes benefi-
cial to focus budgets on sampling rather than assay. 
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Figure 2. Optimal standard errors for estimating µ  given parameters in Table 2. The 
x-axis is the budget in US dollars, the y-axis is the standard error in %SOC attained at the 
given budget. Different colored lines correspond to different assay methods. The cost of 
sampling varies across rows, and the depth varies across columns. The line labels indicate 
the combined costs of sample prep and assay for each method. DC-EA = dry combustion 
in an elemental analyzer; LOI = loss-on-ignition; MIRS = mid-infrared spectroscopy; 
USD = United States dollars. 
 

 

Figure 3. Optimal coefficients of variation for estimating µ  given parameters in Table 
2. The x-axis is the budget in US dollars, the y-axis is the coefficient of variation: 

( )opt
ˆSE µ µ . Different colored lines correspond to different assay methods. The cost of 

sampling varies across rows, and the depth varies across columns. The line labels indicate 
the combined costs of sample prep and assay for each method. DC-EA = dry combustion 
in an elemental analyzer; LOI = loss-on-ignition; MIRS = mid-infrared spectroscopy; 
USD = United States dollars. 
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Table 3. Optimal composite sizes for the three assay methods. Sampling costs are set at 5, 
20, or 40 USD (top row). Soil parameters are determined from the topsoil (first three 
columns) or deep soil (last three columns). An optimal composite size of 1 suggests that 
no compositing should be done, i.e. that all cores should be measured. 

 
Topsoil (0 - 10 cm) Deep Soil (50 - 100 cm) 

5 USD 20 USD 40 USD 5 USD 20 USD 40 USD 

DC-EA 20 10 7 26 13 9 

MIRS 5 3 2 2 1 1 

LOI 2 1 1 1 1 1 

 
Relative efficiencies are given in Table 4. Relative efficiencies for topsoil as-

says are fairly close to 1. For deep soil, DC-EA is at least twice as efficient as 
LOI—all relative efficiencies are less than 0.5 and at least 30% more efficient 
than MIRS for any sampling cost. 

10. Discussion 

In this paper, we statistically formalized the sampling and assay processes to 
characterize the precision of SOC concentration estimation while making mi-
nimal assumptions. We derived optimal composite sizes to maximize precision 
under a fixed budget. Although we did not discuss it extensively, we also solved 
the inverse problem of minimizing costs given a fixed precision (see section B.2 
of our Appendix). 

We applied our method to data from a California rangeland, bringing in costs 
and errors of measurement from other studies [10] [13] [35]. There are a num-
ber of interesting implications from our results. 

First, we found assay error to be a significant source of uncertainty in SOC es-
timation that is usually not taken into account. Indeed, many analyses in the 
SOC literature compute uncertainty estimates accounting only for plot hetero-
geneity (or in some cases, only inter-plot heterogeneity). We found that incor-
porating assay error and costs can double the uncertainty (in terms of standard 
error) compared to the conventional approach of not incorporating assay error. 

Furthermore, the depth of soil under study was an especially important con-
sideration for the assay method employed. We found that efficiencies varied 
much more across the assay methods when attempting to quantify deep soil 
concentrations rather than top soil. In terms of the coefficient of variation, top 
soil can be quantified by any assay method to within about 5% of the mean at a 
budget of 1000 USD. On the other hand, DC-EA seems far better at accurately 
quantifying deep soil concentrations than other methods despite its high cost. 
Equation (4) reveals that when the plot heterogeneity pσ  is high the estimation 
error will be driven largely by the cost of sampling while the cost and precision 
of assay have little effect. Intuitively, we need many samples to characterize the 
heterogeneity within the plot, and cheaper, less precise assay methods generally  
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Table 4. Relative efficiencies of different assay methods compared to DC-EA at different 
profiles (first column) and sampling costs (second column). A relative efficiency signifi-
cantly less than 1 suggests DC-EA is more efficient than the alternative method at any 
given budget, and vice versa for a relative efficiency greater than 1. A relative efficiency 
near 1 suggests little difference between methods. 

Soil Profile Sampling Cost SEDC-EA/SELOI SEDC-EA/SEMIRS 

Topsoil (0 - 10 cm) 5 USD 0.70 0.90 

Topsoil (0 - 10 cm) 20 USD 0.79 0.93 

Topsoil (0 - 10 cm) 40 USD 0.83 0.95 

Deep Soil (50 - 100 cm) 5 USD 0.25 0.48 

Deep Soil (50 - 100 cm) 20 USD 0.36 0.61 

Deep Soil (50 - 100 cm) 40 USD 0.42 0.67 

 
allow many samples to be collected and assayed. Conversely, if the plot hetero-
geneity is low, it is better to collect a few samples that accurately represent the 
average plot concentration and focus the budget on assaying them as precisely as 
possible. 

We also found that with our inputs, the benefits of compositing were quite va-
riable. Compositing many cores together is beneficial when the assay method is 
fairly expensive and precise (e.g. DC-EA), while sampling is fairly cheap (e.g. 
5.00 USD per core). Equation (3) reveals that compositing may also be re-
sourceful when the plot heterogeneity is large compared to assay error. 

We did not incorporate bulk density into our analysis. Estimating bulk density 
is critical to converting from concentrations to stocks. Estimating SOC stock is 
especially necessary in studies of carbon sequestration and climate change miti-
gation, while SOC concentration is typically the parameter of interest from a soil 
health and functioning perspective. As with SOC concentrations, bulk density 
tends to vary substantially across a landscape. However, investigators frequently 
take only one bulk density sample and bulk density is also prone to assay error 
[36]. Thus converting from concentration to stock will incur substantial addi-
tional error, which should ideally be reflected in confidence intervals on stock 
estimates. Our results on the error in concentration estimation can be seen as a 
lower bound on the error in stock estimation, i.e. assuming no error in bulk 
density estimation. In addition to including error in bulk density, future work 
should incorporate more general sampling schemes that can improve efficiency, 
like stratified sampling or well-spread sampling, and optimize over the sampling 
design as well as the assay method. Considering the sampling design alongside 
the compositing and assay strategy will allow investigators to design economical 
soil surveys that achieve their desired precision. 

11. Conclusion 

When assays introduce error into an estimation process, compositing samples 
may have major ramifications for both the precision and cost of estimates. In 
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this paper, we detailed the processes involved in soil organic carbon estimation 
and derived optimal composite sizes to maximize estimation precision when as-
says are subject to multiplicative errors. An analysis of data from California ran-
geland indicated that DC-EA would yield more precise estimates than LOI or 
MIRS, and that, for any given budget, compositing samples before assay would 
yield more precise estimates than assaying individual samples. Optimal compo-
site sizes and assay methods will depend on parameters of the plot under study 
and on the costs of sampling, sample preparation, and assay. Thus, our results 
are not meant to provide universal guidance. We hope that the framework we 
presented here will be useful to investigators aiming to design efficient soil sur-
veys for soil organic carbon concentration and stock. 
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Appendix A: Mathematical Framework 

We have a plot 3⊂  . An element of   is a 3-tuple ( ), ,x y z . x denotes 
longitude or x-axis distance from an origin (e.g. the lower left hand corner of a 
rectangular plot), y denotes latitude or y-axis distance, and z denotes depth. 

At ( ), ,x y z  the soil has some concentration of SOC, which we will denote by 
( ) [ ], , 0,100c x y z ∈  with units in percent or equivalently grams SOC per hecto-

gram of soil. Note that sometimes SOC concentration is reported in grams per 
kilogram. Note also that ( ), ,c x y z  is best conceptualized as an average over a 
small window centered at ( ), ,x y z . Taking the design-based perspective, we 
consider ( ), ,c x y z  to be fixed but unknown. 

To convert to grams SOC per volume of soil, take ( ), ,d x y z  to be the densi-
ty of the soil at point ( ), ,x y z , e.g. in grams per cubic centimeter. This is called 
the “bulk density” in soil science. The amount or stock of carbon in a small area 
centered at point ( ), ,x y z  is thus ( ) ( ), , , ,c x y z d x y z× . The total amount or 
stock of carbon in a plot is: 

( ) ( )

( ) ( )max max max

0 0 0

, , , , d

, , , , d d d
x y z

c x y z d x y z

c x y z d x y z z y x

= ×

= ×

∫

∫ ∫ ∫


 

 

Assuming constant bulk density means that ( ), ,d x y z d=  and the total car-
bon becomes:  

( ), , dd c x y z d µ= = ×∫   

where ( ), , dc x y zµ ≡ ∫   is the population average SOC concentration—the 
key parameter to be estimated through soil sampling. The bulk density d must 
also be estimated. 

The population variance of a plot is formally: 

( ) 22 , , dp c x y zσ µ= −  ∫   

The population variance is a measure of heterogeneity that is instrumental in 
determining the precision of estimates of µ . 

µ  and pσ  are estimated using sampled cores. The plot is often sliced into 
profiles along depth, and positions ( ),x y  locations are randomly sampled 
within depth. From here on we will assume we are sampling within a profile and 
ignore depth. Randomly sampled positions are denoted ( ){ } 1

,
n

i i i
X Y

=
 and the n 

corresponding cores are denoted ( ){ } 1
,

n
i i i

c X Y
=

, or { }1, , nC C  when the loca-
tion is not important. We suppose here that these cores are selected by UIRSing. 
The properties of the sample mean of cores from a UIRS, 1

1 n
iiC C

n =
= ∑ , are 

simple and well-understood: C  is unbiased ( C µ  =  ) and has variance 
2
pC nσ  =  . 

Given a UIRS { }1, , nC C  compositing bins the cores into k groups of size 
n/k. The groups are denoted by a set of indices { }1, , kg g , where { }1 1, ,g n k=  , 

{ }2 1, , 2g n k n k= +  , etc. The cores in each group are physically mixed to-
gether to form composite samples { }1, , kS S . Under compositing additivity,  
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we have 
ii jj g

kS C
n ∈

= ∑ . Note also that the above notation covers the case 

where no compositing is done, with k n=  and i iS C= . 

Under equal proportions compositing of cores from a UIRS, it follows imme-
diately that the sample mean of the composited cores is an unbiased estimate of 
µ :  

1 1 1

1 1 1

i

k k n

i j i
i i j g i

kS C C
k k n n

µ
= = ∈ =

    = = =        
∑ ∑∑ ∑    

Furthermore, because the sample mean of the composite samples is equivalent 
to the sample mean of the constituents, it’s variance is also  

2

1 1

1 1 .
k n

p
i i

i i
S C

k n n
σ

= =

   = =      
∑ ∑   

assay error is drawn from an unknown distribution with positive support and 
denoted iδ . Measured samples are *

i i iS S δ= . We assume assays are unbiased 
so that ( ) 1iδ =  and ( )*

i iS S=  where the expectation is with respect to the 
assay error only (not the sampling distribution). We also assume that the assay 
error has constant variance ( ) 2

i δδ σ= , that does not depend on iS . 
Our estimator is the mean of k measured samples composited from n cores: 

*
1

1ˆ k
ii S

k
µ

=
= ∑ . Under our assumptions, µ̂  is an unbiased estimator:  

[ ]

[ ]

1 1

1 1

1 1ˆ

1 1 .

i

i i

k k

i i j i
i i j g

k k

j i
i j g i j g

kS C
k k n

k kC
k n k n

µ δ δ

δ µ µ

= = ∈

= ∈ = ∈

   = =         

   
 = = =    

   

∑ ∑ ∑

∑ ∑ ∑ ∑

  

 

        (6) 

Its variance is:  

[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]( )

( )

2
1

2 2
2

1

2 2 2 2 2
2

1

2 2 2 2

1ˆ

1

1

1

k

i i
i

k

i i i i i i
i

k

i

S
k

S S S
k

k k
n nk

n k

δ δ

δ δ

µ δ

δ δ δ

σ σ µ σ σ

σ σ µ σ

=

=

=

=

= + +

 = + + 
 

+
= +

∑

∑

∑

 

     

 

Appendix B: Optimizations 
B.1. Minimum Error with a Fixed Budget 

For a budget B, fixed in advance, we seek the solution to the optimization prob-
lem: 

( )
( )2 2 2 2

opt , ,

1
ˆ min min p

M P n k n k
δ δ

σ σ µ σ
µ

+
= +               (7) 
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( )0st : cost cost cost costc P An k B+ ⋅ + ⋅ + ≤             (8) 

1k ≥                             (9) 

k n≤                            (10) 

whereas above cost0 is the fixed cost, costc is the cost of sampling a single core, 
costP is the cost of sample prep, and costA is the cost of assay. A and P addition-
ally denote the assay and sample preparation schemes, which affect costs and 

δσ . 
For a fixed A and P, the inner optimization problem can be solved in closed 

form using a Lagrange multiplier for the constraint. The optimal sampling and 
assay sizes are then: 

( )
( )

2

opt 0
2

1
cost

1 cost cost cost cost

p

p c P A c

n B δ

δ δ

σ σ

σ σ µσ

+
= −

 + + +  

    (11) 

( )
( )

opt 0
2

cost
1 cost cost cost cost costp c P A P A

k B δ

δ δ

µσ

σ σ µσ
= −

 + + + +  

(12) 

This solution ignores the constraints 1k ≥  and k n≤ . If we find opt 1k < , 
then set opt 1k =  and ( )opt 0cost cost cost costP A cn B= − − − . If we find 

*
opt ,P Mk n>  then set ( ) ( )opt opt 0cost cost cost costc P Ak n B= = − + + . To obtain 

integer solutions while staying under budget, optn  and optk  should be rounded 
down. 

B.2. Minimum Cost for a Given Precision 

Given a maximum variance V that we can tolerate, we seek the minimum budget 
over all ways of allocating the budget to samples and assays while achieving that 
precision. Formally: 

( )opt 0, ,
min min cost cost cost costc P AM P n k

B n k= + ⋅ + ⋅ +          (13) 

( )2 2 2 21
st : p V

n k
δ δ

σ σ µ σ+
+ ≤                   (14) 

1k ≥                             (15) 

k n≤                            (16) 

The solution of the inner optimization (for fixed M and P) is: 

( ) 1 22 2 2 2

opt

cost 1
1

cost cost
c p

P A

n
V

δ δ
σ σ µ σ

  ⋅ +  = +  +   

            (17) 

( )
( )

2 2

opt 11 22 2

1
.

cost 1
1 1

cost cost

p

c p

P A

k

V

δ

δ

σ σ

σ σ
−

+
=

   ⋅ +   − +   +     

           (18) 

The constraints 1k ≥  and k n≤  are not respected by these solutions. If we 
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find opt 1k < , then set opt 1k =  and 2
opt pn Vσ=  (obtained, for example, when 

there is no assay error). If we find opt optk n≥ , then set  

( )( )2 2 2 2
opt opt 1pk n Vδ δσ σ µ σ= = + + . To get integer solutions optn  and optk  

should be rounded up. 

Appendix C: Estimating δσ
2  

C.1. Replicate Assays 

Suppose we have r replicated, unbiased assays for the ith sample. The replicates 
are denoted { }* * *

1 2, , ,i i irS S S , where *
ij i ijS S δ=  is the true SOC concentration 

in composite sample i multiplied by an independent, mean 1 assay error. The  

sample mean over replicates is *
1

1 r
i ijjS S

r =
= ∑ , which is an unbiased estimate of 

iS  with variance *| |i i ij iS S S S r   =     . An unbiased estimate of 2
iS  is the 

squared sample mean minus its variance, i.e. 
( ) ( )22 *

1

1
1

r
i ij ijS S S

r r =
− −

− ∑ . Thus we 

might estimate 2
δσ  by plugging in the unbiased estimators of * |ij iS S    and 

2
iS :  

( )
( ) ( ) ( )

2* *

2
2 2* *

1
*

1

1
1ˆ .

1
1

r
ij i

r
i ij i

j

j

S S
r

S S S
r r

δσ
=

=

−
−=
− −

−

∑

∑
                (19) 

This is not necessarily unbiased. If the numerator and denominator are inde-
pendent, then Jensen’s inequality shows this is conservative in expectation: 

2ˆδ δσ σ  >  . We used this replicated measurement technique to estimate the 
error of DC-EA. 

2ˆδσ  can be computed on any sample that is replicated 2 or more times. One 
strategy to estimate δσ  is thus to duplicate every sample ( 2r = ) and then take 
the average or median, though the variance of estimates may be high. Plotting 

2ˆ iδσ  against *
iS  should indicate potential violations of the constant assay error 

variance assumption. Another strategy is to replicate a single sample some large 
number of times, say 30r = , but this will not provide information about the 
constant variance assumption. A good balance is to measure a few samples along 
a grid of *

iS  values some moderately large number of times, say 5r = . Under 
constant assay error variance, the estimates 2ˆ iδσ  should be fairly close and there 
should not be a trend in *

iS . 

C.2. Prediction Methods 

Suppose we have a method that is calibrated to an unbiased assay (e.g. DC-EA) 
by regression, like LOI or MIRS. There are two sources of error in the estimate. 
First, there is the assay error of the calibration assay which can be estimated di-
rectly through replication as per Section C.1. Second, there is the error in the ca-
libration itself, i.e. prediction error. We discuss two ways to estimate the predic-
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tion error. To approximate the total error of a prediction method we recom-
mend simply adding the pieces together. 

Prediction methods typically assume an additive error model and estimate the 
variance of the additive error out of sample. We will call this estimate RMSEv for 
validation root mean squared error. Now, if SOC concentration has been first 
transformed to the log scale, then the model implicitly assumes that error is 
multiplicative on the original scale, our estimate of the error in prediction is 
then exp (RMSEv). On the other hand, if SOC is modeled directly (i.e. without a 
log transformation) then we can approximate the error on a multiplicative scale 
by assuming that the additive error pertains to the average SOC assay, which 
suggests dividing by the average assay. Thus we estimate the prediction error by  
RMSE

ˆ
v

µ
. 

In our application, LOI and MIRS were calibrated both to DC-EA assays. For 
both of these methods, we had an RMSEv of SOC modeled on the original scale 
(without a log transform) so we estimated the error of these methods as  

,LOI
,LOI ,DC-EA

RMSE
ˆ ˆ

ˆ
v

δ δσ σ
µ

= +  

,MIRS
,MIRS ,DC-EA

RMSE
ˆ ˆ

ˆ
v

δ δσ σ
µ

= +  

Appendix D: Shortest Path through Random Points in   

Recall that the area of plot   is  . Finding the shortest path through n 
points is known as the traveling salesman problem. If the n points are generated 
randomly and independently with density ( )f x  then the Beardwood-Halton- 
Hammersley theorem for 2  says that the length of the shortest path con-
verges to:  

( )22 dnL n f x xβ→ ∫  

2β  is an unknown constant, but analytical bounds and numerical simulations 
have pegged it at about 0.714 [29]. Under UIRSing, ( ) 1f x =


 on   and 0 

elsewhere. The integral thus evaluates to  . 
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